findTransformORB
computes the geometric transform between
two images in terms of the ORB feature detector.
Usage
findTransformORB(
template,
image,
warp_mode = "affine",
max_features = 500,
descriptor_matcher = "BruteForce-Hamming",
match_frac = 0.15,
homography_method = "RANSAC"
)
Arguments
- template
A grayscale
Image
object.- image
A grayscale
Image
object of the same dimensions astemplate
.- warp_mode
A character string indicating the type of warping required to transform
image
intotemplate
. It can be any of the following:- "affine" (default):
affine transformation (Euclidean + shear; this transformation will preserve parallelism between lines).
- "homography":
homography transformation (affine + perspective; this transformation does not preserve parallelism between lines).
- max_features
The maximum number of features to extract (default: 500).
- descriptor_matcher
A character string indicating the type of the descriptor matcher to use. It can be one of the followings: "BruteForce", "BruteForce-L1", "BruteForce-Hamming" (the default), "BruteForce-Hamming(2)", or "FlannBased".
- match_frac
The fraction of top matches to keep (default: 0.15).
- homography_method
A character string indicating the method used to compute a homography matrix. It can be one of the followings: "LS" (least-square), "RANSAC" (RANSAC-based robust method; the default), "LMEDS" (Least-Median robust method), or "RHO" (PROSAC-based robust method).
References
Evangelidis, G. D., and Psarakis, E. Z. (2008). Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1858–1865. doi:10.1109/TPAMI.2008.113.
Author
Simon Garnier, garnier@njit.edu
Examples
file1 <- system.file("sample_img/balloon1.png", package = "Rvision")
file2 <- system.file("sample_img/balloon2.png", package = "Rvision")
balloon1 <- changeColorSpace(image(file1), "GRAY")
balloon2 <- changeColorSpace(image(file2), "GRAY")
findTransformORB(balloon1, balloon2)
#> [,1] [,2] [,3]
#> [1,] 1.1907848 0.1557008 -212.3257
#> [2,] -0.2262562 1.1072557 141.3409